Diplomarbeit

Einfluss von subantraler Restknochenhöhe, Operationstechnik und Knochenersatzmaterial beim Sinus-lift auf die klinische Elevationshöhe der Schneiderschen Membran

zur Erlangung des akademischen Grades

Doktor(in) der Zahnheilkunde (Dr.med.dent.)

an der

Medizinischen Universität Wien

ausgeführt an der

Akademie für Orale Chirurgie

unter der Anleitung von

Priv. Doz. Dr. Bernhard Pommer

eingereicht von

Annika Meller

Sigmundsgasse 9/10

1070 Wien

Matrikelnummer: 0942136

Ort, Datum: _________________ Unterschrift: _______________
Inhaltsverzeichnis

Danksagung..4
Zusammenfassung...5
Abstract ...7
1. Einleitung ...8
 1.1 Sinusbodenaugmentation ..8
 1.2 Anatomie des Sinus maxillaris ...8
 1.3 Physiologie des Sinus maxillaris ...13
 1.4 Kieferkammatrophie ..14
 1.5 Implantation ..19
 1.6 Chirurgische Verfahren der Kieferknochenaugmentation ...21
 a. Die Onlayaugmentation ..22
 b. Le-Fort-I-Osteotomie; Hufeisen-Le-Fort-I-Osteotomie ..22
 c. Guided Bone Regeneration ...23
 d. Die Distriktionsosteogenese ...24
 e. Die Sandwich-Osteotomie ...25
 f. Bone Splitting Technik ..25
 1.7 Der Sinuslift ..26
 a. Direkter Sinuslift ..27
 b. Indirekter Sinuslift – Die Summers Osteotomie ..28
 c. Minimalinvasive Methoden ..29
 (i) Das Ballonverfahren ...29
 (ii) Gel-Pressure-Technik ..30
 (iii) Press-Fit-Technik ..30
 d. Kontraindikationen und Komplikationen ..31
 1.8 Augmentationsmaterialien ..32
 a. Autogener Knochen ..32
 b. Allogene Knochenersatzmaterialien ...33
 c. Xenogene Knochenersatzmaterialien ...33
 d. Bio-Oss® ..34
 e. Sonstige Materialien ..34

2. Ziel der Studie...37
3. Material und Methoden .. 38
 3.1 Patientenkollektiv .. 38
 3.2 Präoperative Diagnostik .. 38
 3.3 Chirurgisches Vorgehen ... 39
 3.4 Radiologische Diagnostik des Sinus maxillaris ... 40
 3.5 Datenerhebung und Vermessung .. 42
 3.6 Statistische Auswertung .. 43

4. Resultate .. 45
 4.1 Deskriptive Statistik ... 45
 4.2 Induktive Statistik ... 48

5. Diskussion .. 55

6. Konklusion ... 61

7. Ethikvotum .. 62

8. Lebenslauf ... 63

9. Abbildungsverzeichnis .. 64

10. Tabellenverzeichnis .. 68

11. Literaturverzeichnis .. 69
Danksagung

Zusammenfassung

Ziel dieser retrospektiv angelegten Studie war es, die Einflussfaktoren auf die klinische Elevationshöhe und die Restknochenhöhe zu untersuchen.

Resultate: Das Geschlecht der Patienten, die Wahl zwischen einzeitigen und zweizeitigen Verfahren, die Sinusliftbreite und die Implantatlänge hatten einen signifikanten Einfluss auf die Elevationshöhe der Sinusmembran. Es wurde festgestellt, dass bei breiteren Sinuslifts eine mittlere Elevationshöhe von 8,2 mm erzielt wurde. Im Vergleich dazu wurde bei schmalen Sinuslifts mit einer Breite von einer Prämolarenbreite eine durchschnittliche Höhe von 8,6 mm erreicht. Die Elevationshöhe bei Männern betrug bei schmalen Sinuslifts durchschnittlich 8,2 mm und bei breiten Sinuslifts 8,5 mm. Bei Frauen wurde eine Höhe von 8,5 mm bei Einzelzahnsinuslifts und 8,9 mm bei größeren Sinuslifts erreicht. Es zeigte sich, dass schmälere Sinuslifts bei Frauen eine äquivalente Elevationshöhe erzielten wie breite Sinuslifts bei Männern. Raucher und Patienten mit Parodontitis wiesen eine niedrigere präoperative Knochenhöhe auf. Ebenfalls zeigte sich ein signifikanter Unterschied der Residualknochenhöhe im Bezug auf Geschlecht und Zahnposition. Die Restknochenhöhe hatte einen signifikanten Einfluss auf die Wahl des chirurgischen Verfahrens, die Breite des Sinuslifts und die Implantatlänge. Der Abstand zwischen Implantatspitze und Sinusboden war signifikant von Position und Sinusliftbreite beeinflusst. Die Wahl des Knochenersatzmaterials hatte keinen Einfluss auf die
spätere Elevationshöhe. Der Einsatz von Membranen hatte einen signifikanten Effekt und führte zu höheren Elevationshöhen.

Konklusion: Bei der Wahl des Operationsverfahrens spielt die präoperative Restknochenhöhe eine entscheidende Rolle. Beim zweizeitigen Vorgehen kann eine größere klinische Elevationshöhe erreicht werden.
Abstract

The atrophy of the upper jaw after tooth loss and the increasing pneumatisation of the maxillary sinus in older patients impairs the possibility of placing implants in the edentulous maxilla. The sinuslift is a well-accepted technique to increase the bone volume before the insertion of implants in the upper jaw. The Schneiderian Membrane is elevated and repositioned in an upward direction and the cavity is filled with either autogenous bone grafts or bone substitutes. In cases of enough residual bone height, the one-step approach is indicated, allowing the insertion of implants in the same surgical intervention. If there is a shortage of residual bone height, the two-step procedure is recommended. Autologous bone grafts are still considered the gold standard.

The aim of this retrospective investigation was to evaluate the influencing parameters on the elevation height and the residual bone height.

Materials and methods: 448 patients could be included in this study. The residual ridge height was measured from panoramic radiographs, taken not longer than three months after the surgery. The elevation height was assessed and statistically analyzed.

Results: The gain of bone height was statistically significant different regarding gender, one-step or two-step surgical procedure, width of the sinuslift and length of the implant. Wide Sinuslifts gained an average bone height of 8,2 mm. Narrow sinuslifts led to a mean bone height of 8,6 mm. Men had an average bone height of 8,2 mm in narrow sinuslifts and 8,5 mm in wide sinuslifts. Narrow sinuslifts in women led to a mean bone height of 8,5 mm whereas wide sinuslifts in female patients gained 8,9 mm of bone height. The results showed, that narrow sinuslifts in women led to an equivalent gain of bone as wide sinuslifts in men. Patients with periodontitis and smoking habits showed a statistically significant reduced residual bone height. Gender and position of the implant had a significant influence on the residual bone volume. Based on the residual bone height, there was a significant difference in the chosen surgical procedure, the width of the sinus augmentation and the length of the implants. The distance between implant and sinus floor was significantly affected by the implant position and width of the augmented area. The choice of different bone grafts had no impact on the elevation height of the Schneiderian membrane. There was a significant difference of bone gain when using membranes.

Conclusion: The residual bone height is relevant for choosing the surgical procedure. The two-stage method leads to greater bone gain than the one-stage technique.
1. Einleitung

1.1 Sinusbodenaugmentation

1.2 Anatomie des Sinus maxillaris

Die Größe des Sinus maxillaris nimmt mit dem Wachstum vom Säuglingsalter bis ins Erwachsenenalter zu und erreicht eine Endgröße von etwa 12 bis 15 cm³. Im Mittel erreicht die Kieferhöhle eine Dimension von 35 x 32 x 25 mm, wobei hier individuelle Unterschiede bestehen können (Fanghänel et al., 2009).

Der Sinusboden besitzt klassischerweise eine konvexe Form. Seine anteriore Begrenzung liegt zu 8% im Bereich des zweiten Prämolars, zu 58% im Bereich des ersten Prämolars und zu 33% im Bereich des Eckzahnes. Die posteriore Ausdehnung reicht zu 94% bis in die Region des dritten Molaren. Der Sinus maxillaris besitzt seinen kaudalsten Punkt zumeist in der Region der ersten Molaren (Watzek und Pommer, 2012).

Während die Maxilla im jungen Alter stark vaskularisiert ist, reduziert sich die Durchblutung im höheren Alter durch Stenosen, progressive Atrophie und mikrovaskuläre Defekte bedeutend. Die Blutzufuhr über das Periost gewährleistet jedoch auch bei hochatrophen Kieferkämmen eine ausreichende Durchblutung (Watzek und Pommer, 2012).

Es können sich kortikale Septen bilden, welche die Kieferhöhle in mehrere luftgefüllte Kammern unterteilen. Diese Kompartimente, oder auch Recessi, sind zumeist durch knöcherne Lamellen innerhalb des Sinus maxillaris begrenzt, welche auch Underwood’sche Septen genannt werden (Underwood, 1910). Die Septen dienen der Unterstützung der knöchernen Architektur der

Die Prävalenz und Charakteristik der Underwood’schen Septen wurde in einer Metaanalyse anhand von 33 Studien untersucht. Dabei zeigte sich eine durchschnittliche Prävalenz dieser Septen mit 28,4%, mit einer Spanne von 10% bis 48%. Atrophe Kiefer waren signifikant öfter betroffen und zu 54,6% wies die Region der 1. Molaren solche Septen auf. Es zeigte sich, dass Underwood’sche Septen öfter in transversaler als in sagittaler Richtung verlaufen. Vor allem bei der Sinusbodenaugmentation ist das Vorkommen von Kieferhöhlensepten ein relevanter Faktor für das chirurgische Vorgehen (Pommer et al., 2012).

Abb.4: Underwoodsches Septum in der rechten Kieferhöhle eines Patienten
1.3 Physiologie des Sinus maxillaris

Im Inneren ist der Sinus maxillaris mit einem mehrschichtigen respiratorischen Flimmerepithel ausgekleidet, der Schneiderschen Membran. Die antrale Membran ist durchschnittlich 0,8 mm dick und sehr ähnlich der nasalen Mukosa. Sie besitzt eine Basalmembran, schleimproduzierende Becherzellen und ein mehrreihiges Flimmerepithel. Sie ist aber im Vergleich zur nasalen Schleimhaut etwas dünner und auch geringer vaskularisiert. Durch das Ostium nasale, auch Hiatus semilunaris genannt, ist die Kieferhöhle physiologisch mit der Nasenhaupthöhle verbunden. Durch das Infundibulum ethmoidale besteht dadurch eine Verbindung zwischen Sinus maxillaris und dem mittleren Nasengang (Woo und Le, 2004).

Die physiologischen Funktionen der Nasennebenhöhlen sind noch nicht vollständig geklärt, aber es gibt dazu einige theoretische Ansätze:

- Schutz von intrakraniellen Strukturen durch eine Stoßdämpfungswirkung der Sinusarchitektur gegen Trauma.
- Wärmeisolierung und Temperaturangleichung des Gehirns.
- Einfluss des Sinus maxillaris auf das Wachstum und die Architektur des Gesichtes.
- Der Sinus maxillaris wirkt wie ein Resonanzkörper zur Verstärkung der Stimme. Jedoch konnte gezeigt werden, dass die Nasennebenhöhlen keinen bedeutenden Einfluss als Klangkörper zur Unterstützung der Stimme besitzen und sich die Stimme nach einer Sinusbodenaugmentation nicht signifikant ändert.
- Abgabe von mukösen Sekret zur Befeuchtung der nasalen Schleimhaut. Jedoch besitzt die nasale Mukosa im Vergleich zur antralen Mukosa um das 1000-fache mehr Schleimdrüsen pro mm².
- Erwärmung und Befeuchtung der Atemluft: Limitiert wird diese Theorie dadurch, dass es mindestens 50 Atemzyklen braucht um die gesamte im Sinus enthaltene Luft auszutauschen.
- Erhaltung des Gleichgewichts durch Gewichtsreduktion des Schädels: Jedoch reduziert der Sinus maxillaris das Gewicht des Schädels lediglich um 1% (Watzek und Pommer, 2012).

1.4 Kieferkammatrophie

Innerhalb des ersten Jahres nach Zahnverlust ist das Ausmaß der Kieferkammatrophie am größten mit durchschnittlich 1-2 mm. In den weiteren Jahren schreitet der Alveolarkammverlust mit 0,1-0,5 mm pro Jahr fort, wobei die Mandibula im Vergleich zur Maxilla bedeutend höhere Atrophiewerte aufweist. Dies ist auf die um das vielfach höhere Turnover-Rate der Mandibula zurückzuführen, sowie auf die deutlich größere Prothesenbasis im Oberkiefer mit folglich geringeren Druckbelastungsspitzen des Prothesensattels (Atwood, 1979).

Abb.6: Kieferabhängige Atrophierichtung
In der Literatur gibt es unterschiedliche Klassifikationen dieser Resorptionsvorgänge. Eine bedeutende Einteilung ist die Klassifizierung nach Cawood und Howell, welche die Knochenquantität in sechs Kategorien beschreibt:

I) beizahnter Kiefer
II) leere Alveole unmittelbar nach Zahnverlust
III) wohl gerundeter Alveolarkamm mit adäquater Höhe und Breite
IV) messerscharfer Alveolarkamm mit adäquater Höhe aber inadäquater Breite
V) flacher Alveolarkamm mit inadäquater Höhe und Breite
VI) hochatropher Alveolarforsatz mit teilweise negativen Kieferkämmen

(Cawood und Howell, 1988)

Eine weitere Klassifizierung der Alveolarkammatrophie ist die Einteilung nach Lekholm et al., welche das Verhältnis von kortikalen und spongiösen Knochen in vier Typen beschreiben:

Typ 1: homogener kortikaler Knochen
Typ 2: dicke Kortikalis, dichte und stabile Spongiosa
Typ 3: dünne Kortikalis, ausgedehnte und dichte Spongiosa
Typ 4: sehr dünne Kortikalis und eine Spongiosa mit reduzierter Dichte und Stabilität

Diese vier unterschiedlichen Typen der Knochenqualität kommen auch an verschiedenen anatomischen Arealen vor. So ist ein Knochen vom Typ 1 und Typ 2 oft mit der Mandibula assoziiert, während die Maxilla eher eine lockere trabekuläre Struktur aufweist, meistens Typ 3 und Typ 4. Anterior besitzen beide Kieferknochen vermehrt dichte kortikale Strukturen und nach posterior eine eher verminderte trabekuläre Vernetzung.

Die Pneumatisierung des Sinus maxillaris ist ein physiologischer Prozess, welcher während des Wachstums auftritt und zu einer Volumenvergrößerung der Nasennebenhöhlen führt. Das Sinusvolumen vergrößert sich auf Kosten des Processus alveolaris maxillae und die Zahnwurzeln sind infolgedessen oft nur noch durch eine papierdünne Knochenlamelle begrenzt. Man beobachtet, dass besonders die Wurzeln der Molaren folglich direkt in die Kieferhöhle hineinragen. (Sharan und Madjar, 2008)
Kommt es zu einem Zahnverlust, steigt die Aktivität der Osteoklasten und es kommt zu einem stärkeren vertikalen Knochenabbau (Schwenzer und Ehrenfeld, 2000). Die verstärkte Expansion der Kieferhöhle an dieser Stelle ist auf die verlängerte Heilungsperiode nach einer Zahnextraktion zurückzuführen. Der Sinus maxillaris vergrößert sich innerhalb der ersten fünf Jahre an der Stelle des Zahnverlusts um 2,8 mm mehr kaudalwärts als die kontralaterale Kieferhöhle (Sharan und Madjar, 2008). Im Verlauf der Jahre nach Zahnverlust kann der Kieferkamm soweit atrophieren, dass nur noch eine hauchdünne Lamelle Mundhöhle und Antrum voneinander trennt (Woo und Le, 2004).
1.5 Implantation

Der angestrebte direkte Verbund zwischen organisierten Knochengerwebe und der Oberfläche eines Implantats wurde von Branemark Osseointegration genannt (Branemark et al., 1969).

Implantationen, welche sechs bis zwölf Monate nach Zahnentfernung durchgeführt werden, bezeichnet man als Spätimplantationen. Nachteilig bei dieser Methode ist der vorangeschrittene Knochenabbau des Processus alveolaris (Schwenzer und Ehrenfeld, 2000).

Aufgrund des geringen Mineralgehalts und der daraus folgenden verminderten Belastungsfähigkeit wird dieser oft auch als unreifer, primärer Knochen angeführt. In weiterer Folge wird die Faserstruktur zunehmend verdichtet und es bildet sich lamellärer Knochen. Schließlich folgt eine Reifung und Adaption des entstandenen periimplantären Knochens an die individuellen Belastungen und eine Ausrichtung der knöchernen Faserstruktur.

Dieses Remodelling ist in etwa einem Jahr nach Implantatinsertion abgeschlossen.

Ausschlaggebend für eine erfolgreiche Osseointegration ist die genaue Passung des Implantates im Alveolarknochen, keine zu hohen Belastungsspitzen während der Einheilung, die Biokompatibilität des verwendeten Implantates und eine ausreichende Primärstabilität (Schenk und Buser, 1998).

Eine erfolgreiche Implantation zeichnet sich durch folgende Eigenschaften aus:

- Funktion (Kauen, Phonetik)
- Ästhetik und Zufriedenheit des Patienten
- Keine Osteolysen und periimplantären Entzündungen
- Keine Mobilität des Implantates
- keine Schmerzsymptomatik oder pathologische Befunde
- ein maximaler vertikaler Knochenabbau von 0,2 mm / Jahr nach einem Jahr in situ (Albrektsson et al., 1986)

Kommt es allerdings zu einem Implantatmissersfolg, werden zwei bedeutende Perioden unterschieden: der frühe und der späte Implantatverlust.

1.6 Chirurgische Verfahren der Kieferknochenaugsmentation

a. Die Onlayaumentation

b. Le-Fort-I-Osteotomie; Hufeisen-Le-Fort-I-Osteotomie

Dieses Verfahren kommt in der hochatrophen Maxilla zum Einsatz, wenn zusätzlich ein flacher Gaumen und eine verkehrte sagittale Bisslage vorliegt (Gössweiner et al., 1999).

Abb. 12: Osteotomieebenen der Le-Fort-I-Osteotomie und der Hufeisenosteotomie

c. Guided Bone Regeneration

Das Konzept der Guided Bone Regeneration beinhaltet die Verwendung von Membranen, welche zusätzlich zum Knochenersatzmaterial verwendet werden und über einen horizontalen oder vertikalen Defekt aufgebracht werden. Diese Membranen schützen und fördern die Migration von knochenbildenden Zellen und verhindern gleichzeitig das Einwachsen von unerwünschten weichgewebssbildenden Zellen (Block und Haggerty, 2009). Es gibt resorbierbare und nichtresorbierbare sowie titanverstärkte Membranen, die als Platzhalter dienen. Im Vergleich zu natürlichem Kieferknochen konnte kein signifikanter Unterschied der Implantatüberlebensrate gefunden werden, jedoch ist die Resorption des marginalen periimplantären Knochen bei der Guided Bone Regeneration signifikant erhöht und beträgt in etwa 1,3 mm. Es zeigt sich eine Knochenerhöhung von durchschnittlich 2,6 mm horizontal und 3,6 mm vertikal, jedoch auch eine initiale Knochenresorption von 40% (Pommer et al., 2012). In der vorliegenden Studie kam es in 38% der Fälle zu einer verfrühten Exposition der Membran, welche zu einem partiellen oder totalen Verlust des regenerierten Knochens führte (Block und Haggerty, 2009).
d. Die Distraktionsosteogenese

Abb. 13: Distракtionsosteogenese in der anterioren Maxilla: a) Latenzphase, b) Distракtionsphase, c) Konsolidierungsphase nach Erreichen der Endposition

Die Distракtionsosteogenese wird zur Alveolarforsatzverlängerung im interforaminalen Bereich der Mandibula sowie auch im Frontbereich der Maxilla angewandt. Im Seitzahnbereich ist dieses Verfahren aufgrund der Lage des Nervus alveolaris inferior im Unterkiefer und der Kieferhöhle im Oberkiefer limitiert (Schwenzer und Ehrenfeld, 2000).
e. Die Sandwich-Osteotomie

Die Sandwich-Osteotomie ist bei einem verminderten vertikalen Knochenangebot des Kiefers indiziert, kann jedoch sowie die Distraktionsosteogenese keine transversalen Defizite korrigieren (Block und Haggerty, 2009). Bei dieser Methode wird der Alveolarkamm wie bei der Distraktionsosteogenese vom Kieferknochen abgetrennt, jedoch initial gleich in der gewünschten Endposition fixiert. Zusätzlich wird ein Knochentransplantat zwischen die beiden Osteotomiehälften interponiert und mit Osteosyntheseplatten fixiert. In der Maxilla wird hierbei die Le-Fort-I-Osteotomie angewandt (Chiapasco et al., 2006).

Abb.14: Sandwich Osteotomie im 3. Quadranten eines Patienten

f. Bone Splitting Technik

Nach einer krestalen Osteotomie wird bei diesem chirurgischen Verfahren der Kieferkamm vorsichtig mit Osteotomen verbreitert und eine Sofortimplantation ermöglicht. Die entstandene Lücke kann zusätzlich mit Knochenersatzmaterial aufgefüllt werden (Chiapasco et al., 2006). Diese Methode erlaubt eine horizontale Kieferkammerweiterung von durchschnittlich 4 mm (Pommer et al., 2012).

Abb.15: Bone Splitting Technik im Oberkiefer
1.7 Der Sinuslift

a. Direkter Sinuslift

Abb. 16: Schematische Darstellung der Sinusbodenaugmentation: 2) runde Fensterung der lateralen Sinuswand, 3) Sinusbodenelevation mit eingebrachtem Knocheneratzmaterial
b. Indirekter Sinuslift = Die Summers Osteotomie

c. Minimalinvasive Methoden

(i) Das Ballonverfahren

Der Zugang erfolgt hierbei wie beim direkten Zugang über eine laterale Fensterung (Muronoi et al., 2003). Eine weitere Möglichkeit beschreibt den indirekten, transkrestalen Zugang mit anschließend sofortiger Implantatinzision.

Abb 18: links: Der Ballon bei einem transkrestalen Zugang; rechts: endoskopische Ansicht der Sinuselevation durch den Ballon
(ii) Gel-Pressure-Technik

(iii) Press-Fit-Technik

d. Kontraindikationen und Komplikationen

Bei einer bestehenden Sinusitis, Kieferhöhzenysten, Tumoren sowie in den Sinus verlagerte Zahnwurzelreste ist eine Sinusbodenaugmentation kontraindiziert (Smiler et al., 1992).

In der vorliegenden Studie wurden 300 Patienten auf Komplikationen nach dem Sinuslift untersucht. Die postoperative Sinusitis Prävalenz betrug 8,4%, bei Rauchern war sie auf 26,2% erhöht. In fünf Fällen kam es zu Wunddehiszenzen, davon waren auch Raucher öfter betroffen. In 8,6% der Fälle kam es zu einer Ruptur der Schneider’schen Membran, welche signifikant mit dem Vorhandensein von Sinus-Septen, Raucherstatus und geringer Restknochenschicht korrelierte (Schwarz et al., 2015).
1.8 Augmentationsmaterialien

In der Zahnmedizin haben Materialien zum Knochenaufbau einen immer höheren Stellenwert. Sie unterstützen und beschleunigen die Osteogenese und dienen als Platzhalter und Gerüstvorgabe für die Formation von neuen Knochen. Idealerweise sollten diese Substanzen folgende Eigenschaften besitzen:

- Biokompatibilität: keine toxische, immunologische, teratogene, kanzerogenen Effekte
- Osteogenese: Formation von Knochen

(Schwenzer und Ehrenfeld, 2000)

a. Autogener Knochen

Autologer Knochen besitzt vitale Osteoblasten sowie pluripotente Stammzellen und hat dadurch eine osteogene, osteoinduktive und osteokonduktive Wirkung. Studien haben gezeigt, dass autologer Knochen jedoch im Vergleich zu anderen Knochenersatzmaterialien schneller resorbiert wird und dadurch die Stabilität von Implantaten gefährdet sein kann. Deswegen werden oft Mischungen aus autologen Knochen und Knochenersatzmaterialien für die Augmentation verwendet, da dies bessere Langzeitergebnisse erzielt (Thorwarth et al., 2006).

b. Allogene Knochenersatzmaterialien

c. Xenogene Knochenersatzmaterialien

d. Bio-Oss®

e. Sonstige Materialien

Weitere alloplastische Knochenersatzmaterialien sind Siliziumdioxidverbindungen, auch als bioaktive Gläser bekannt. Studien haben jedoch gezeigt, dass diese vermehrt Narbenbildung als Knochenformation fördern, weshalb sie mit autologen Knochen gemischt werden sollten (Roffi et al., 2013).

1.9 Guided Bone Regeneration mit Membranen

Die Guided Bone Regeneration (= gesteuerte Knochenregeneration) beinhaltet folgende vier Hauptprinzipien:
- Ausschluss von unerwünschten Gewebe und Zellen
- Platzschaffung und -erhalt
- Schutz des Knochenersatzmaterials bzw. des Blutkoagulums
- Stabilisierung der Wunde
(Kay et al., 1997)

a. Die Bio-Gide® Membran

b. Die Atrisorb® Membran

c. Die Gore-Tex® Membran

2. Ziel der Studie

Die Sinusbodenaugmentation ermöglicht die Schaffung einer adäquaten Knochenhöhe für eine Implantation bei unzureichendem Knochenangebot des Processus alveolaris maxillae. Diese Vergrößerung der Knochenhöhe bezeichnet man auch als klinische Elevationshöhe.

Ziel dieser retrospektiv angelegten Diplomarbeit war die Evaluation von direkten Einflussfaktoren auf die klinische Elevationshöhe der Schneider’schen Membran beim Sinuslift. Weiters wurde evaluiert, ob Rückschlüsse dieser Parameter auf die Optimierung von Indikationswahl und Therapieauswahl gezogen werden können.

Folgende Faktoren wurden dabei analysiert:

- Präoperative Restknochenhöhe
- Einsatz von Knochenersatzmaterialien
- Implantationszeitpunkt: einzeitig / zweizeitiges Vorgehen
- Einheilmodus
- Implantatlänge und –durchmesser
- Lückenposition und –breite
- Anamnestische Faktoren: Geschlecht, Rauchverhalten, Parodontalstatus

Die Alternativhypothese postulierte, dass die subantrale Restknochenhöhe, die Knochenersatzmaterialien und die Operationstechnik einen signifikanten Einfluss auf die klinische Elevationshöhe der Schneider’schen Membran haben.

Die Nullhypothese besagte, dass es keinen Zusammenhang zwischen diesen Parametern und der klinischen Elevationshöhe der Sinusmembran gibt.
3. Material und Methoden

3.1 Patientenkollektiv

3.2 Präoperative Diagnostik

Nach dieser präoperativen Diagnostik erhielt man Aufschluss über den Patienten und konnte gegebenenfalls den Behandlungsplan individuell anpassen.

3.3 Chirurgisches Vorgehen

Nach der präoperativen Planung wurde der chirurgische Eingriff durchgeführt. Die Patienten wurden angewiesen, eine Stunde präoperativ bereits ein Antibiotikum (2 g Augmentin; bei Penicillinallergie: Dalacin C 600mg) sowie ein NSAR (=Nichtsteroidales Antirheumatikum; Parkemed 500mg oder Seractil forte 400mg) einzunehmen.

Zur Schmerzausschaltung erhielten die Patienten eine Lokalanästhesie (Ultracain Dental Forte). Der Adrenalinzusatz im Lokalanästhetikum enthält vasokonstriktorische Eigenschaften welche die Wirkungsdauer und den Verbleib am Wirkungsort verlängert und die perioperative Einblutung herabsetzt. Dadurch erhält der Operateur eine bessere Übersicht über das Operationsgebiet (Schwenzer und Ehrenfeld, 2000).

3.4 Radiologische Diagnostik des Sinus maxillaris

Abb.22: Vermessenes OPTG eines Patienten
3.5 Datenerhebung und Vermessung

Es wurden folgende Faktoren erfasst:
- Geschlecht
- Parodontalstatus
- Indikation
- ein-/zweizeitiges Verfahren
- Implantationszeitpunkt
- Implantatposition
- Lücke
- Implantatlänge
- Implantatdurchmesser
- Einheilmodus
- Knochensatzmaterial
- Membrane

Die vorhandenen Panoramaröntgenaufnahmen wurden im radiologischen Programm Sidexis® (Sirona Dental GmbH) vermessen. Es wurde zuerst die Distanz der aktuellen und der im radiologischen Bild sichtbaren Implantatlänge kalibriert. Anschließend wurden folgende Parameter vermessen:
A = die mesiale Residualknochenhöhe des Implantates
B = die distale Residualknochenhöhe des Implantates
C = der Abstand zwischen Sinusboden und Implantatspitze

Daraus wurde die klinische Elevationshöhe (=EH) wie folgt berechnet:
EH = Implantatlänge – Mittelwert AB + C

Abb.23: Sinuslift im 1.Quadranten am OPTG eines Patienten mit den vermessenen Punkten A,B und C;

3.6 Statistische Auswertung

Die statistische Auswertung der Daten wurde im Programm R® (R-Project, Wien, Österreich) durchgeführt.
Signifikante Zusammenhänge wurden mit dem Korrelationskoeffizienten Spearman ermittelt. Für die Subgruppenanalyse zweier Gruppen wurde der Wilcoxon Rangsummentest gewählt, für die Analyse mehrerer Gruppen der Kruskal-Wallis Rangsummentest.
4. Resultate

4.1 Deskriptive Statistik

In die vorliegende Studie konnten 448 Patienten eingeschlossen werden. Davon waren 52,7% Männer und 47,3% Frauen mit einem durchschnittlichen Alter von 56,6 Jahren. Anamnestisch hatten 42 Personen eine Parodontitis, die Prävalenz war 9,4%. 195 Patienten hatten einen positiven Raucherstatus, dies entsprach 43,5%.

Alle in die Studie eingeschlossenen Patienten wurden an der Akademie für orale Implantologie behandelt. Sie erhielten einen Sinuslift mit anschließender Implantation. Dabei wurde bei 194 Personen (43,3%) das einzeitige Verfahren gewählt und bei 254 Personen (56,7%) das zweizeitige Vorgehen. Die Indikationen wurden in Einzelzahn-, Freiendlücke und Leerkiefer eingeteilt. 8,8% der Patienten hatten eine Einzelzahnlücke, 78,7% eine Freiendsituation und bei 12,5% war ein Leerkiefer vorzufinden.

Abb. 24: Einteilung des Patientenkollektivs nach Indikation
Die gewählten Implantatpositionen wurden nach der Zahnposition in fünf Gruppen eingeteilt: An der Position des Eckzahnes wurde bei einem Patienten (0,4%) implantiert. An der Position des 1. Prämolaren wurde bei 48 Patienten (10,7%) ein Sinuslift mit nachfolgender Implantation durchgeführt. 114 Patienten (25,2%) bekamen einen Knochenaufbau mit Implantation an der Position des zweiten Prämolaren.

Die Breite des Sinuslifts wurde nach Zahnbreiten in fünf Gruppen eingeteilt. Eine Zahnbreite entspricht einer Prämolarenbreite von 7 mm und wurde als Maß für die Breite des Sinuslifts benutzt. 114 Patienten (25,2%) besaßen eine Zahnbreite 1. Zahnbreite 2 war bei 134 Patienten (29,7%) vorzufinden, Zahnbreite 3 bei 148 Patienten (33%), Zahnbreite 4 bei 51 Patienten (11,7%). Eine Zahnbreite von 5 hatte lediglich ein Patient (0,4%).

Es wurden außerdem die jeweiligen Implantatlängen erfasst. Diese wurden in zwei Gruppen eingeteilt: Die Längen von 8,9 und 10 mm wurden bei 111 Patienten (24,8%) eingesetzt, die Implantatlängen von 11, 12,5 ,13 und 16 mm wurden bei 337 Patienten (75,2%) verwendet. Der Implantatdurchmesser der gewählten Implantate wurde ebenfalls miteinbezogen.

86 Patienten (18,5%) hatten einen Implantatdurchmesser von 3,5mm. Ein Durchmesser von 4,3 mm war in den meisten Fällen verwendet worden, nämlich bei 254 Personen (56%). 102 Implantate (24,4%) mit einem Durchmesser von 5mm kamen zum Einsatz. Bei einem Patienten

Abb. 25: Einteilung des Patientenkollektivs nach Implantatpositionen
wurden Implantate mit einem Durchmesser von 4 mm inseriert, bei einem Patienten 4,5 mm, bei einem Patienten 4,2 mm. Dies entspricht jeweils 0,4%. Bei drei Personen waren keine Angaben aus den vorhandenen OP-Protokollen zu entnehmen.

Der Implantationszeitpunkt wurde nach zwei Gruppen eingeteilt: die Sofortimplantation nach Zahnverlust wurde bei 22 Patienten (5%) durchgeführt, die verzögerte Implantation bei 426 der Patienten (95%). Bei 297 Patienten (66,3%) heilten die Implantate subgingival ein, bei 151 Patienten (33,7%) transgingival.

Bei 134 Patienten (29,9%) kam es zum Einsatz der Membrantechnik. Dabei wurde bei 115 Personen die Bio-Gide® Membran benutzt, dies entspricht 25,67%. In 16 Fällen (3,57%) wurde die Gore-Tex® Membran angewendet und in drei Fällen (0,67%) wurde die Atrisorb® Membran eingesetzt.
4.2 Induktive Statistik

Es wurde eine Regressionsanalyse durchgeführt, um den Einfluss von Geschlecht, Parodontalstatus, Indikation, ein- / zweizeitiges Verfahren, Implantationszeitpunkt, Implantatposition, Zahnbreite, Implantatlänge, Implantatdurchmesser, Einheilmodus, Knochenersatzmaterial und Membranen auf die klinische Elevationshöhe (=EH), die Restknochenhöhe (= der Mittelwert von AB) und den Abstand Sinusboden und Implantat (= C) zu untersuchen. Das Signifikanzniveau wurde bei p=0,05 definiert.

Anschließend wurde eine multifaktorielle Varianzanalyse (ANOVA) durchgeführt, um die Hypothesen zu überprüfen.

Die multifaktorielle Korrelationsanalyse der klinischen Elevationshöhe ergab einen signifikanten Zusammenhang der EH mit den Einflussfaktoren Geschlecht, einzeitig / zweizeitiges Verfahren, Zahnbreite und Implantatlänge.

Der Wilcoxon Rangsummentest ergab einen p-Wert von 0,019 zwischen Geschlecht und EH. Zwischen einzeitigem / zweizeitigen Verfahren und EH ergab dieser Test einen p-Wert von < 0,01. Der Wilcoxon Rangsummentest ergab zwischen Zahnbreite und EH einen p-Wert von < 0,01 und zwischen Implantatlänge und EH wurde ein p-Wert von < 0,01 ermittelt.

<table>
<thead>
<tr>
<th></th>
<th>Geschlecht</th>
<th>einzeitig / zweizeitig</th>
<th>Zahnbreite</th>
<th>Länge</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,019</td>
<td>0,002469</td>
<td>0,0004388</td>
<td>0,0003179</td>
</tr>
</tbody>
</table>

Tab.1: Ergebnisse des Wilcoxon Rangsummentest mit dem Hauptzielparameter EH; Quelle: Annika Meller

Anschließend wurde eine multifaktorielle Varianzanalyse (ANOVA) durchgeführt. Diese unterstützte die Hypothese, dass die klinische Elevationshöhe signifikant von Geschlecht, einzeitigem / zweizeitigem Verfahren, Zahnbreite und Länge abhängig ist.

Sehr stark signifikante Unterschiede (p < 0,001) der klinischen Elevationshöhe waren bei den unterschiedlichen Implantatlängen zu beobachten.

<table>
<thead>
<tr>
<th></th>
<th>Geschlecht</th>
<th>Einzeitig / Zweizeitig</th>
<th>Zahnbreite</th>
<th>Länge</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,0194648</td>
<td>0,0436272</td>
<td>0,0109513</td>
<td>0,0003251</td>
</tr>
</tbody>
</table>

Tab.2: Ergebnisse der ANOVA mit dem Hauptzielparameter EH; Quelle: Annika Meller
Es wurden die Mittelwerte der klinischen Elevationshöhe und die Standardabweichungen berechnet. Bei weiblichen Patienten waren größere Elevationshöhen beobachtet worden, der durchschnittliche Unterschied der Elevationshöhe zu männlichen Patienten betrug 0,39 mm. Die Differenz von einzigen und zweizeitigen Verfahren betrug 0,5 mm. Beim einzigen Verfahren wurde ein durchschnittlicher Mittelwert der EH von 7,99 mm ermittelt und beim zweizeitigen Verfahren war die mittlere Elevationshöhe 8,49 mm. Der Einflussfaktor Zahnbreite war ebenfalls signifikant. Eine Zahnbreite von 4, dies entspricht einer Sinusliftbreite von 28 mm, betrug die durchschnittliche EH 10,2 mm. Auch der Einfluss der Implantatlänge auf die klinische Elevationshöhe war signifikant.

In der folgenden Tabelle sind die Mittelwerte und Standardabweichungen der signifikanten Einflussfaktoren auf die klinische Elevationshöhe zusammengefasst:

<table>
<thead>
<tr>
<th></th>
<th>Mittelwert EH</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Männlich</td>
<td>8,07 mm</td>
<td>3,535</td>
</tr>
<tr>
<td>Weiblich</td>
<td>8,46 mm</td>
<td>3,522</td>
</tr>
<tr>
<td>Verfahren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einzeitig</td>
<td>7,99 mm</td>
<td>3,539</td>
</tr>
<tr>
<td>Zweizeitig</td>
<td>8,49 mm</td>
<td>3,532</td>
</tr>
<tr>
<td>Zahnbreite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8,20 mm</td>
<td>3,532</td>
</tr>
<tr>
<td>2</td>
<td>8,25 mm</td>
<td>3,543</td>
</tr>
<tr>
<td>3</td>
<td>7,81 mm</td>
<td>3,532</td>
</tr>
<tr>
<td>4</td>
<td>10,20 mm</td>
<td>3,537</td>
</tr>
<tr>
<td>5</td>
<td>7,54 mm</td>
<td>3,639</td>
</tr>
<tr>
<td>Implantatlänge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,9,10 mm</td>
<td>7,18 mm</td>
<td>3,537</td>
</tr>
<tr>
<td>11,12,5,13,16 mm</td>
<td>8,67 mm</td>
<td>3,532</td>
</tr>
</tbody>
</table>

Tab.3: Ermittlung des Mittelwerts der klinischen Elevationshöhe sowie der Standardabweichung der signifikanten Einflussfaktoren nach der ANOVA;

Der Unterschied der anderen Einflussfaktoren auf die klinische Elevationshöhe wurde sowohl in der Regressionsanalyse als auch in der ANOVA als nicht signifikant gewertet.

Die Korrelationsanalyse der Restknochenhöhe, dem Mittelwert aus A und B, wurde mittels Wilcoxon und Kruskal Wallis Rangsummentest durchgeführt. Der Wilcoxon Rangsummentest

Der jeweilige p-Wert der signifikanten Einflussfaktoren wird in folgender Tabelle aufgelistet:

<table>
<thead>
<tr>
<th></th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raucherstatus</td>
<td>0,00144</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>0,001561</td>
</tr>
<tr>
<td>Parodontalstatus</td>
<td>0,00174</td>
</tr>
<tr>
<td>Einzeitig / Zweizeitig</td>
<td>0,0001025</td>
</tr>
<tr>
<td>Position</td>
<td>0,00791</td>
</tr>
<tr>
<td>Zahnbreite</td>
<td>0,0008768</td>
</tr>
<tr>
<td>Implantatlänge</td>
<td>0,0001872</td>
</tr>
</tbody>
</table>

Die anschließende Varianzanalyse unterstützte diese Hypothese und konnte die Signifikanz dieser Einflussfaktoren befürworten. Die ANOVA kam zu folgenden Ergebnissen:

<table>
<thead>
<tr>
<th></th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raucherstatus</td>
<td>0,011036</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>0,011032</td>
</tr>
<tr>
<td>Parodontalstatus</td>
<td>0,011827</td>
</tr>
<tr>
<td>Einzeitig / Zweizeitig</td>
<td>0,00172</td>
</tr>
<tr>
<td>Position</td>
<td>0,001511</td>
</tr>
<tr>
<td>Zahnbreite</td>
<td>0,0002469</td>
</tr>
<tr>
<td>Implantatlänge</td>
<td>0,00102</td>
</tr>
</tbody>
</table>
Für die präoperative Restknochenhöhe der signifikanten Parameter wurde der jeweilige Mittelwert und die Standardabweichung berechnet.

Bei Rauchern wurde eine um durchschnittlich 0,88 mm geringere Restknochenhöhe festgestellt. Bei Parodontitispatienten zeigte sich eine um 1,2 mm verminderte Residualknochenhöhe. Bei männlichen Patienten war die restliche Knochenhöhe um durchschnittlich 0,91 mm höher als bei weiblichen Patienten. Ebenfalls war ein signifikanter Unterschied beim Einsatz des jeweiligen chirurgischen Vorgehen im Bezug auf einzeitiges und zweizeitiges Verfahren ersichtlich. Die durchschnittliche Restknochenhöhe bei einzeitigen Verfahren war 6,79 mm und bei zweizeitigen Verfahren 6,02 mm. In der Position des ersten Prämolaren wurde die höchste mittlere Restknochenhöhe mit 7,42 mm ermittelt. Bei Sinuslifts mit einer Breite von 3 Zahnbreiten wurde die im Vergleich größere Residualknochenhöhe von 7,05 mm festgestellt. Bei der Wahl der Implantatlänge wurden höhere Residualknochenhöhen in der Gruppe der Implantatlängen 11, 12,5, 13 und 16 mm.

In der folgenden Tabelle sind die Mittelwerte und Standardabweichungen für die Restknochenhöhe (= AB) veranschaulicht:

<table>
<thead>
<tr>
<th>Raucherstatus</th>
<th>Nichtraucher 6,7 mm</th>
<th>Standardabweichung 2,974</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raucher</td>
<td>5,82 mm</td>
<td>2,982</td>
</tr>
<tr>
<td>Parodontalstatus</td>
<td>Parodontal gesund 6,4 mm</td>
<td>2,979</td>
</tr>
<tr>
<td>Parodontitis</td>
<td>5,2 mm</td>
<td>2,974</td>
</tr>
<tr>
<td>Geschlecht</td>
<td>Männlich 6,86 mm</td>
<td>2,982</td>
</tr>
<tr>
<td></td>
<td>Weiblich 5,95 mm</td>
<td>2,974</td>
</tr>
<tr>
<td>Verfahren</td>
<td>Einzeitig 6,79 mm</td>
<td>2,979</td>
</tr>
<tr>
<td></td>
<td>Zweizeitig 6,02 mm</td>
<td>2,977</td>
</tr>
<tr>
<td>Position</td>
<td>3 6,27 mm</td>
<td>3,032</td>
</tr>
<tr>
<td></td>
<td>4 7,42 mm</td>
<td>2,979</td>
</tr>
<tr>
<td></td>
<td>5 6,54 mm</td>
<td>2,985</td>
</tr>
<tr>
<td></td>
<td>6 5,94 mm</td>
<td>2,974</td>
</tr>
</tbody>
</table>

Die p-Werte der Korrelationsanalyse sind in folgender Tabelle zusammengefasst:

<table>
<thead>
<tr>
<th></th>
<th>Einheilmodus</th>
<th>Position</th>
<th>Indikation</th>
<th>Zahnbreite</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,002472</td>
<td>0,01778</td>
<td>0,006105</td>
<td>0,003477</td>
</tr>
</tbody>
</table>

Die anschließend durchgeführte ANOVA konnte jedoch nicht alle Hypothesen der Regressionsanalyse verifizieren. Es zeigte sich, dass die Faktoren Implantatposition und Zahnbreite einen signifikanten Einfluss auf C haben.

<table>
<thead>
<tr>
<th>ANOVA C</th>
<th>Einheilmodus</th>
<th>Position</th>
<th>Indikation</th>
<th>Zahnbreite</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Wert</td>
<td>0,05236</td>
<td>0,02247</td>
<td>0,07753</td>
<td>0,04528</td>
</tr>
</tbody>
</table>

Tab.6: Ermittlung des Mittelwerts der Restknochenhöhe AB sowie der Standardabweichung der signifikanten Einflussfaktoren nach der ANOVA

Tab.7: Ergebnisse des Wilcoxon Rangsummentest mit dem Hauptzielparameter C

Tab.8: Ergebnisse der ANOVA mit dem Hauptzielparameter C
Für den Abstand zwischen Implantatspitze und Sinusboden wurden folgende Mittelwerte und Standardabweichungen erhoben:

<table>
<thead>
<tr>
<th>Position</th>
<th>Mittelwert C</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3,89 mm</td>
<td>1,79</td>
</tr>
<tr>
<td>4</td>
<td>3,25 mm</td>
<td>1,72</td>
</tr>
<tr>
<td>5</td>
<td>2,97 mm</td>
<td>1,73</td>
</tr>
<tr>
<td>6</td>
<td>2,63 mm</td>
<td>1,723</td>
</tr>
<tr>
<td>7</td>
<td>3,02 mm</td>
<td>1,74</td>
</tr>
<tr>
<td>Zahnbreite</td>
<td>Mittelwert C</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>1</td>
<td>2,47 mm</td>
<td>1,723</td>
</tr>
<tr>
<td>2</td>
<td>2,73 mm</td>
<td>1,713</td>
</tr>
<tr>
<td>3</td>
<td>3,29 mm</td>
<td>1,711</td>
</tr>
<tr>
<td>4</td>
<td>2,94 mm</td>
<td>1,713</td>
</tr>
<tr>
<td>5</td>
<td>2,08 mm</td>
<td>1,565</td>
</tr>
</tbody>
</table>

Tab.9: Ermittlung des Mittelwerts des Abstandes Implantatspitze – Sinusboden (–C) sowie der Standardabweichung der signifikanten Einflussfaktoren nach der ANOVA

Die Ergebnisse der statistischen Auswertung haben gezeigt, dass die Verwendung von Knochenersatzmaterialien keinen signifikanten Einfluss auf die Elevationshöhe der Schneider’schen Membran hat.

Bei 262 Patienten kam es zum Einsatz von Augmentationsmaterialien. Es zeigte sich jedoch bei der Verwendung von verschiedenen Knochenersatzmaterialien kein signifikanter Unterschied zwischen der Verwendung von autologen Knochen von intraoral und extraoral und BioOss®. Die mittlere EH bei der Verwendung von intraoralen autologen Knochen betrug 8,52 mm, beim Einsatz von extraoralen Knochen aus dem Beckenkamm betrug die mittlere EH 8,85 mm und mit BioOss wurde eine durchschnittliche EH von 8,95 mm erreicht. Der p-Wert betrug < 0,01 auf einem Signifikanzniveau von p = 0,05. Die Analyse der anderen Faktoren zeigte keine weiteren statistisch signifikanten Resultate. Die vorhandene Restknochenhöhe hatte keinen signifikanten Einfluss auf die Wahl des Augmentationsmaterials.
In der folgenden Tabelle werden die Mittelwerte der klinischen Elevationshöhe (= EH) und der Restknochenhöhe (= AB) im Bezug auf das Knochensatzmaterial veranschaulicht:

<table>
<thead>
<tr>
<th>Material</th>
<th>Mittelwert EH</th>
<th>Mittelwert AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraoraler autologer Knochen</td>
<td>8,523 mm</td>
<td>6,412 mm</td>
</tr>
<tr>
<td>Extraoraler autologer Knochen</td>
<td>8,856 mm</td>
<td>6,797 mm</td>
</tr>
<tr>
<td>BioOss®</td>
<td>8,952 mm</td>
<td>6,37 mm</td>
</tr>
<tr>
<td>Keine Angaben</td>
<td>8,06 mm</td>
<td>6,67 mm</td>
</tr>
</tbody>
</table>

Tab.10: Ermittlung des Mittelwerts von EH und AB der verschiedenen Knochensatzmaterialien

Der Einsatz von Membranen hatte einen statistisch signifikanten Einfluss auf die klinische Elevationshöhe. Die mittlere Elevationshöhe beim Einsatz von Membranen betrug 9,19 mm im Vergleich zu 8,35 mm beim Kollektiv ohne Membrane. Es zeigte sich auch, dass bei einer durchschnittlichen Restknochenhöhe von 4,44 mm Membrane zum Einsatz kamen. Beim Kollektiv ohne Membrane betrug die Restknochenhöhe im Mittel 6,58 mm. Dieses Ergebnis war hoch signifikant mit einem p-Wert von < 0,01 und zeigte, dass bei geringer Residualknochenhöhe bevorzugt Membranen verwendet wurden.

In der folgenden Tabelle sind die Mittelwerte der Elevationshöhe und die Mittelwerte der Restknochenhöhe im Bezug auf die jeweils verwendete Membran zusammengefasst:

<table>
<thead>
<tr>
<th>Membran</th>
<th>Mittelwert EH</th>
<th>Mittelwert AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrisorb® Membran</td>
<td>10,02 mm</td>
<td>2,98 mm</td>
</tr>
<tr>
<td>BioGide® Membran</td>
<td>8,59 mm</td>
<td>5,649 mm</td>
</tr>
<tr>
<td>GoreTex® Membran</td>
<td>8,96 mm</td>
<td>4,71 mm</td>
</tr>
<tr>
<td>Keine Membran</td>
<td>8,35 mm</td>
<td>6,58 mm</td>
</tr>
</tbody>
</table>

Tab.11: Ermittlung des Mittelwerts von EH und AB der verschiedenen Membranen

Abb. 26: Die 10-Jahres Überlebensschätzung durch Kaplan-Meier
5. Diskussion

In der vorliegenden Studie wurde analysiert, welchen Einfluss Restknochenhöhe, Knochenersatzmaterial und die Wahl der Operationstechnik auf die klinische Elevationshöhe der Schneiderschen Membran haben. Es wurden die präoperative Restknochenhöhe sowie der Abstand zwischen Implantatspitze und Sinusboden auf OPTGs vermessen und die klinische Elevationshöhe berechnet. Anschließend wurden die gewonnenen Daten statistisch ausgewertet und analysiert.

Nach dem Studium der bestehenden Literatur ergeben sich für die präoperative Restknochenhöhe folgende Empfehlungen für das chirurgische Vorgehen: bei einer initialen Restknochenhöhe über 5 mm kann der Operateur zwischen einem lateralen und transkrestalen Zugang wählen. Bei diesem Szenario handelt es sich um ein einzeitiges Verfahren, da bei einer Knochenhöhe von über 5 mm genügend Primärstabilität für die direkt anschließende Implantation vorhanden ist. Bei einer Residualknochenhöhe von unter 5 mm wird empfohlen, ein zweizeitiges Vorgehen mit einem lateralen, direkten Zugang beim Sinuslift zu wählen. Die Implantatininsertion erfolgt in einem zweiten Eingriff (Listl und Faggien, 2010).

In der vorliegenden Studie wurde bei 194 Patienten (43,3%) das einzeitige Verfahren gewählt und bei 254 Personen (56,7%) das zweizeitige Vorgehen. Beim einzeitigen Verfahren hatten die Patienten eine durchschnittliche Restknochenhöhe von 6,72 mm und eine Elevationshöhe von im Durchschnitt 7,87 mm. Beim zweizeitigen Verfahren hatten die Patienten eine Restknochenhöhe von durchschnittlich 5,89 mm und eine Elevationshöhe von etwa 8,78 mm. Diese Werte sind in der folgenden Tabelle veranschaulicht:

<table>
<thead>
<tr>
<th></th>
<th>AB (=RKH)</th>
<th>EH</th>
<th>Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einzeitig</td>
<td>6,72 mm</td>
<td>7,87 mm</td>
<td>194 Patienten (43,3%)</td>
</tr>
<tr>
<td>Zweizeitig</td>
<td>5,89 mm</td>
<td>8,78 mm</td>
<td>254 Patienten (56,7%)</td>
</tr>
</tbody>
</table>

Tab.12.: Restknochenhöhe und Elevationshöhe bezogen auf einzeitig / zweizeitiges Verfahren

Es zeigte sich eine Tendenz von der Wahl des Verfahrens auf die präoperativ vorhandene Residualknochenhöhe, jedoch entsprachen die Ergebnisse der durchschnittlichen Restknochenhöhe nicht exakt den Empfehlungen aus der Literatur. Dies kann auf der Tatsache beruhen, dass an der Akademie für orale Implantologie mehrere Chirurgen tätig sind und dadurch...
eine große Variabilität an Vorgehensweisen besteht. Aus den ausgewerteten Daten könnte man annehmen, dass der Schwellenwert für die Entscheidung zwischen ein- und zweizeitigem Vorgehen bei 6 mm lag.

Abb.27: Darstellung der Restknochenhöhe bezogen auf einzeitiges und zweizeitiges Verfahren

Abb.28: Darstellung der klinischen Elevationshöhe bezogen auf einzeitiges und zweizeitiges Verfahren

Abb. 29: Abhängigkeit der klinischen Elevationshöhe von der Restknochenhöhe.
Die Restknochenhöhe, der Mittelwert aus A und B, bezogen auf die Position erwies sich in der vorliegenden Studie als statistisch signifikant. Für die Position des ersten Prämolars wurde eine RKH von 7,42 mm, für die Position des zweiten Prämolars eine RKH von 6,54 mm, für die Position des ersten Molars eine RKH von 5,94 mm und für die Position des zweiten Molars eine RKH von 6,38 mm im Durchschnitt eruiert. Reich et al. kamen ebenfalls zum Ergebnis, dass die durchschnittliche Restknochenhöhe in der Molarenregion niedriger als in der Prämolarenregion ist (Reich et al., 2015). In der vorliegenden Studie erwiesen sich ein positiver Raucherstatus, das Vorhandensein einer Parodontitis und das Geschlecht als signifikante Einflussfaktoren auf die Residualknochenhöhe. Reich et al. konnten in ihrer Studie jedoch keinen signifikanten Einfluss des Geschlechts auf die Restknochenhöhe beweisen.

Raucher hatten in der vorliegenden Studie eine mittlere Residualknochenhöhe von 5,82 mm, im Vergleich dazu hatten Nichtraucher einen Wert von durchschnittlich 6,7 mm. Dieses Ergebnis ist mit den Resultaten aus der Literatur vergleichbar. Galindo-Moreno et al. kamen zu dem Schluss, dass Raucher eine verminderte Restknochenhöhe haben (Galindo-Moreno et al., 2012). Ein Review von Van der Weijden et al. erfasste ebenfalls eine verminderte Residualknochenhöhe bei Patienten mit einem positiven Raucherstatus (Van Der Weijden et al., 2009).

Das Vorhandensein einer Parodontitis wirkte sich in der vorliegenden Studie ebenso signifikant auf die Restknochenhöhe aus. Der Mittelwert aus A und B betrug bei Patienten mit parodontal vorbelasteten Kiefern 5,2 mm und bei der parodontal gesunden Kohorte 6,4 mm. In ihrer Untersuchung kamen Galindo-Moreno et al. auch zu dem Resultat, dass sich Parodontitis signifikant auf die Restknochenhöhe auswirkt (Galindo-Moreno et al., 2012).

Die Sinusbodenaugmentation mit BioOss oder autologen Knochen als Knochenersatzmaterial erwies sich auch in einer Studie von Lutz et al. als äquivalent (Lutz et al., 2015).
Der Einsatz von Membranen hatte einen statistisch signifikanten Einfluss auf die klinische Elevationshöhe. Die mittlere Elevationshöhe beim Einsatz von Membranen betrug 9,19 mm im Vergleich zu 8,35 mm beim Kollektiv ohne Membran. Innerhalb der verschiedenen Membranen war kein signifikanter Unterschied im Bezug auf die Art der verwendeten Membran ersichtlich. Dieses Ergebnis ist vergleichbar mit einer Studie von Gassling et al., welche auch keinen signifikanten Unterschied zwischen den verschiedenen Membranen fanden (Gassling et al., 2013). Auch eine Metaanalyse von Suarez-Lopez Del Amo et al. erfasste keinen signifikanten Zusammenhang zwischen dem Einsatz von verschiedenen Membranen zur Deckung der lateralen Fensterung beim Sinuslift (Suarez-Lopez Del Amo et al., 2015).

Laut einer Studie von Rosen et al. hat die Residualknochenhöhe einen entscheidenden Einfluss auf die Überlebensrate der Implantate. Bei einer Knochenhöhe von > 5 mm ergab sich eine Überlebensrate von 96%, während diese bei < 4 mm nur noch 85,7% betrug (Rosen et al., 1999). Pjetursson et al. untersuchten ebenfalls die Restknochenhöhe auf die Überlebenswahrscheinlichkeit und kamen zu folgendem Ergebnis: 91,3% bei einer Knochenhöhe von < 4 mm, 100% bei > 4 mm nach 3 Jahren. Dies ergab eine durchschnittliche 3-Jahres Überlebensrate von 97,4% (Pjetursson et al., 2009). Im Vergleich dazu ergab die Auswertung der vorhandenen Patientendaten eine vergleichbare durchschnittliche 3-Jahres Überlebensrate von 98% nach der Kaplan Meier Überlebensschätzung.
6. Konklusion

7. Ethikvotum

8. Lebenslauf

Name: Annika Stefanie Meller
Geboren: 10.3.1991 in Wien, Österreich
Staatsangehörigkeit: Österreich
Eltern: Dr. Heinz Meller
Dr. Beatrice Meller

Ausbildung:
1997-2001 Volksschule Ober St. Veit, Hietzinger Hauptstraße 166, 1130 Wien
2001-2009 Neusprachliches Gymnasium GRG13, Wenzgasse 7, 1130 Wien
Sommersemester 2007 Internataufenthalt Truro School, Truro, Cornwall, UK
Seit Wintersemester 2009 Studium der Zahnmedizin, Medizinische Universität Wien
September 2013 – Mai 2015 72-Wochen Praktikum, Universitätszahnklinik Wien, Sensengasse 2a, 1090 Wien
9. Abbildungsverzeichnis

Abb. 1: Anatomie des Sinus maxillaris von ventral

Abb.2: Sinus maxillaris von lateral
Quelle: Anatomy of the Human Body; Gray H.; Barthleby.com; 2000

Abb. 3.: Venen des Schädelbereichs

Abb.4: Underwoodsches Septum in der rechten Kieferhöhle eines Patienten

Abb.5: a) Lichtmikroskopische Aufnahme von der Sinusmembran. b) SEM (Scanning electron microscopy) Aufnahme vom Flimmerepithel mit schleimproduzierenden Becherzellen.

Abb.6: Kieferabhängige Atrophierichtung

Abb.7: Klassifizierung der Kieferkammatrophie der anterioren und der posterioren Maxilla
Abb. 8: Klassifikation der Knochenqualität von Leckholm et al.

Abb. 9: Pneumatisierung des Sinus maxillaris

Abb. 10: Recessus der Kieferhöhle nach Zahnverlust
Quelle: Internetrecherche: https://www.studyblue.com/notes/note/n/sinus/deck/11448416; Zugriff am 03.08.2015

Abb. 11: Osseointegration eines Implantates;

Abb. 12: Osteotomieebenen der Le-Fort-I-Osteotomie und der Hufeisenosteotomie

Abb. 13: Distractionsosteogenese in der anterioren Maxilla: a) Latenzphase, b) Distractionsphase, c) Konsolidierungsphase nach Erreichen der Endposition
Quelle: To graft or not to graft? Evidence-based guide to decision making in oral bone graft surgery; Pommer, B., Watzek, G., Palmer, R., & Zechner, W.; 2012

Abb. 14: Sandwich Osteotomie im 3. Quadranten eines Patienten
Quelle: Internetrecherche: http://www.sembroniomaxillo.com/chirurgia-maxillo-facciale/innesti-ossei-implantologia; Zugriff am 04.08.2015

Abb. 15: Bone Splitting Technik im Oberkiefer
Quelle: Internetrecherche: http://www.zahn-zahnarzt-berlin.de/upload/Bone_Splitting.png; Zugriff am 04.08.2015
Abb. 16: Schematische Darstellung der Sinusbodenaugmentation: 2) runde Fensterung der lateralen Sinuswand, 3) Sinusbodenelevation mit eingebrachtem Knochenersatzmaterial

Abb. 17: Schematische Darstellung des transkrestalen Sinuslifts

Abb 18.: links: Der Ballon bei einem transkrestalen Zugang; rechts: endoskopische Ansicht der Sinuselevation durch den Ballon
Quelle: Sinus augmentation via transcrestal approach: A comparison between balloon and osteotome technique in a cadaver study; Chan, H., Oh, J.et al.; Clinical Oral Implants Research; 2013; 24:9:985-990

Abb. 19: Schematische Darstellung der Press-Fit-Technik

Abb. 20: Links: Geistlich Bio-Oss® zeigt große Ähnlichkeit zu menschlichem Knochen.
(Vergrößerung 50-fach). Rechts: Menschlicher Knochen hat eine einzigartige Struktur.
(Vergrößerung 50-fach)
Quelle: Internetrecherche: http://www.geistlich.de/de/dental/knochenersatz/bio-oss/vorteile-fuer-den-anwender/?professional=1; Zugriff am 07.08.2015

Abb. 21: Aufbau des Patientenkollektivs
Quelle: Microsoft Excel, Annika Meller

Abb. 22: Vermessenes OPTG eines Patienten
Quelle: Sidexis, Akademie für Orale Implantologie
Abb. 23: Sinuslift im 1. Quadranten am OPTG eines Patienten mit den vermessenen Punkten A, B und C;
Quelle: Sidexis, Akademie für Orale Implantologie

Abb. 24: Einteilung des Patientenkollektivs nach Indikation
Quelle: Microsoft Excel, Annika Meller

Abb. 25: Einteilung des Patientenkollektivs nach Implantatpositionen
Quelle: Microsoft Excel, Annika Meller

Abb. 26: Die 10-Jahres Überlebensschätzung durch Kaplan-Meier
Quelle: Mag. Petra Pokorny, Akademie für orale Implantologie

Abb. 27: Darstellung der Restknochenhöhe bezogen auf einzeitig und zweizeitigen Verfahren
Quelle: Microsoft Excel, Annika Meller

Abb. 28: Darstellung der klinischen Elevationshöhe bezogen auf einzeitige und zweizeitige Verfahren
Quelle: Microsoft Excel, Annika Meller

Abb. 29: Abhängigkeit der klinischen Elevationshöhe von der Restknochenhöhe.
Quelle: Microsoft Excel, Annika Meller
10. Tabellenverzeichnis

Tab.1: Ergebnisse des Wilcoxon Rangsummentest mit dem Hauptzielparameter EH;

Tab.2: Ergebnisse der ANOVA mit dem Hauptzielparameter EH;

Tab.3: Ermittlung des Mittelwerts der klinischen Elevationshöhe sowie der Standardabweichung der signifikanten Einflussfaktoren nach der ANOVA;

Tab.4: Ergebnisse der Korrelationsanalyse des Hauptzielparameters AB

Tab.5: Ergebnisse der ANOVA des Hauptzielparameters AB

Tab.6: Ermittlung des Mittelwerts der Restknochenhöhe AB sowie der Standardabweichung der signifikanten Einflussfaktoren nach der ANOVA;

Tab.7: Ergebnisse des Wilcoxon Rangsummentest mit dem Hauptzielparameter C;

Tab.8: Ergebnisse der ANOVA mit dem Hauptzielparameter C;

Tab.9: Ermittlung des Mittelwerts des Abstandes Implantatspitze – Sinusboden (=C) sowie der Standardabweichung der signifikanten Einflussfaktoren nach der ANOVA;

Tab.10: Ermittlung des Mittelwerts von EH und AB der verschiedenen Knochener satzmaterialien;

Tab.11: Ermittlung des Mittelwerts von EH und AB der verschiedenen Membrane;

Tab.12: Restknochenhöhe und Elevationshöhe bezogen auf einzeitiges / zweizeitiges Verfahren
11. Literaturverzeichnis

http://doi.org/10.1016/j.joms.2004.06.037

http://doi.org/10.1111/j.1600-0501.2011.02168.x

